Committees of Adaboost ensembles with modified emphasis functions
نویسندگان
چکیده
Real Adaboost ensembles with weighted emphasis (RA-we) on erroneous and critical (near the classification boundary) samples have recently been proposed, leading to improved performance when an adequate combination of these terms is selected. However, finding the optimal emphasis adjustment is not an easy task. In this paper, we propose to make a fusion of the outputs of RA-we ensembles trained with different emphasis adjustments by means of a generalized voting scheme. The resulting committee of RA-we ensembles can retain the performance of the best RA-we component and even, occasionally, can improve it. Additionally, we present an ensemble selection strategy that removes from the committee RA-we ensembles with very poor performance. Experimental results show that these committees frequently outperform RA and RA-we with cross validated emphasis. & 2010 Elsevier B.V. All rights reserved.
منابع مشابه
Designing neural network committees by combining boosting ensembles
The use of modified Real Adaboost ensembles by applying weighted emphasis on erroneous and critical (near the classification boundary) has been shown to lead to improved designs, both in performance and in ensemble sizes. In this paper, we propose to take advantage of the diversity among different weighted combination to build committees of modified Real Adaboost designs. Experiments show that ...
متن کاملEmpirical analysis of support vector machine ensemble classifiers
Ensemble classification – combining the results of a set of base learners – has received much attention in the machine learning community and has demonstrated promising capabilities in improving classification accuracy. Compared with neural network or decision tree ensembles, there is no comprehensive empirical research in support vector machine (SVM) ensembles. To fill this void, this paper an...
متن کاملADABOOST ENSEMBLE ALGORITHMS FOR BREAST CANCER CLASSIFICATION
With an advance in technologies, different tumor features have been collected for Breast Cancer (BC) diagnosis, processing of dealing with large data set suffers some challenges which include high storage capacity and time require for accessing and processing. The objective of this paper is to classify BC based on the extracted tumor features. To extract useful information and diagnose the tumo...
متن کاملBoosting by weighting critical and erroneous samples
Real Adaboost is a well-known and good performance boosting method used to build machine ensembles for classification. Considering that its emphasis function can be decomposed in two factors that pay separated attention to sample errors and to their proximity to the classification border, a generalized emphasis function that combines both components by means of a selectable parameter, l, is pre...
متن کاملUsing Model Trees and Their Ensembles for Imbalanced Data
Model trees are decision trees with linear regression functions at the leaves. Although originally proposed for regression, they have also been applied successfully in classification problems. This paper studies their performance for imbalanced problems. These trees give better results that standard decision trees (J48, based on C4.5) and decision trees specific for imbalanced data (CCPDT: Clas...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Neurocomputing
دوره 73 شماره
صفحات -
تاریخ انتشار 2010